Psychosocial Intervention Psychosocial Intervention
Psychosocial Intervention 26 (2017) 117-24 - Vol. 26 No.2 DOI: 10.1016/j.psi.2017.01.001
An illustration of how program implementers can use population-specific analyses to facilitate the selection of evidence-based home visiting programs
Ejemplo de cómo los directores de programas pueden emplear análisis específicos para grupos de población con el fin de facilitar la selección de programas de visitas domiciliarias basados en la evidencia
Ayesha C. Sujana,, , John Eckenrodeb
a Indiana University, USA
b Cornell University, USA
Received 30 October 2016, Accepted 23 January 2017
Abstract

Given that effective home visiting (HV) programs targeting at-risk families impact different outcomes and associations between risk factors and outcomes may vary across populations, program implementers should evaluate population-specific risk-outcome associations in order to select interventions that are most likely to benefit families in target communities. We used data collected in a rural community in upstate New York (i.e., Elmira) and three standard statistical methods (i.e., bivariate, multivariate, and cumulative risk analyses) to assess associations between maternal socio-demographic risk factors and outcomes typically targeted with HV interventions. With the results, we illustrated how program implementers could use population-specific analyses of data collected prior to the implementation of HV interventions to select interventions that may be most likely to benefit families in a target community. For example, our multivariate results suggested that lower socioeconomic families in Elmira were particularly at-risk for child maltreatment, poor family economic self-sufficiency, and poor child academic achievement, indicating that it may be particularly beneficial to implement HV programs that have been shown to affect these outcomes (e.g., Nurse Family Partnership and Parents as Teachers) in Elmira. We encourage program implementers to conduct similar population-specific analyses to help select evidence-based HV interventions for their target communities.

Resumen

Puesto que el impacto de los programas de visitas domiciliarias (VD) centrados en las familias en situación de riesgo obtiene resultados diferentes y las asociaciones entre factores de riesgo y resultados pueden variar en función de los grupos poblacionales, los encargados de los programas deberían evaluar las asociaciones entre los riesgos y los resultados en poblaciones específicas con el fin de seleccionar las intervenciones que más beneficio reportarán a las familias de las comunidades seleccionadas. Se recogieron datos de una comunidad rural del norte del estado de Nueva York (p. ej., Elmira) y tres métodos estadísticos estándar (p. ej., análisis de riesgo bivariante, multivariante y acumulativos) para valorar las asociaciones entre los factores de riesgo materno sociodemográficos y los resultados típicamente buscados en las intervenciones de VD. Con los resultados ilustramos cómo los directores de los programas pueden utilizar análisis de datos específicos de una población que se han recopilado de manera previa a las intervenciones de VD para seleccionar las intervenciones que tendrían más probabilidad de beneficiar a las familias de las comunidades seleccionadas. Por ejemplo, nuestros resultados del análisis multivariante sugerían que las familias de Elmira con un nivel socioeconómico más bajo presentaban un riesgo especial de maltrato infantil, una pobre autosubsistencia económica familiar, y un rendimiento académico infantil bajo, lo que indica que podría ser especialmente beneficioso para esa localidad el poner en marcha programas de VD que hayan demostrado un efecto sobre estos resultados (p. ej., Nurse Family Partnership y Parents as Teachers). Se anima a los encargados de los programas a dirigir análisis similares específicos para grupos poblacionales que ayuden a la selección de las intervenciones de VD basadas en la evidencia para las comunidades seleccionadas.

Psychosocial Intervention 26 (2017) 117-24 - Vol. 26 No.2 DOI: 10.1016/j.psi.2017.01.001