Psychosocial Intervention Psychosocial Intervention
Psychosocial Intervention 26 (2017) 117-24 - Vol. 26 No.2 DOI: 10.1016/j.psi.2017.01.001
An illustration of how program implementers can use population-specific analyses to facilitate the selection of evidence-based home visiting programs
Ejemplo de cómo los directores de programas pueden emplear análisis específicos para grupos de población con el fin de facilitar la selección de programas de visitas domiciliarias basados en la evidencia
Ayesha C. Sujana,, , John Eckenrodeb
a Indiana University, USA
b Cornell University, USA
Received 30 October 2016, Accepted 23 January 2017
Abstract

Given that effective home visiting (HV) programs targeting at-risk families impact different outcomes and associations between risk factors and outcomes may vary across populations, program implementers should evaluate population-specific risk-outcome associations in order to select interventions that are most likely to benefit families in target communities. We used data collected in a rural community in upstate New York (i.e., Elmira) and three standard statistical methods (i.e., bivariate, multivariate, and cumulative risk analyses) to assess associations between maternal socio-demographic risk factors and outcomes typically targeted with HV interventions. With the results, we illustrated how program implementers could use population-specific analyses of data collected prior to the implementation of HV interventions to select interventions that may be most likely to benefit families in a target community. For example, our multivariate results suggested that lower socioeconomic families in Elmira were particularly at-risk for child maltreatment, poor family economic self-sufficiency, and poor child academic achievement, indicating that it may be particularly beneficial to implement HV programs that have been shown to affect these outcomes (e.g., Nurse Family Partnership and Parents as Teachers) in Elmira. We encourage program implementers to conduct similar population-specific analyses to help select evidence-based HV interventions for their target communities.

Keywords
  • Home visiting interventions
  • Maternal and child health
  • Targeting interventions
  • Disseminating interventions
Resumen

Puesto que el impacto de los programas de visitas domiciliarias (VD) centrados en las familias en situación de riesgo obtiene resultados diferentes y las asociaciones entre factores de riesgo y resultados pueden variar en función de los grupos poblacionales, los encargados de los programas deberían evaluar las asociaciones entre los riesgos y los resultados en poblaciones específicas con el fin de seleccionar las intervenciones que más beneficio reportarán a las familias de las comunidades seleccionadas. Se recogieron datos de una comunidad rural del norte del estado de Nueva York (p. ej., Elmira) y tres métodos estadísticos estándar (p. ej., análisis de riesgo bivariante, multivariante y acumulativos) para valorar las asociaciones entre los factores de riesgo materno sociodemográficos y los resultados típicamente buscados en las intervenciones de VD. Con los resultados ilustramos cómo los directores de los programas pueden utilizar análisis de datos específicos de una población que se han recopilado de manera previa a las intervenciones de VD para seleccionar las intervenciones que tendrían más probabilidad de beneficiar a las familias de las comunidades seleccionadas. Por ejemplo, nuestros resultados del análisis multivariante sugerían que las familias de Elmira con un nivel socioeconómico más bajo presentaban un riesgo especial de maltrato infantil, una pobre autosubsistencia económica familiar, y un rendimiento académico infantil bajo, lo que indica que podría ser especialmente beneficioso para esa localidad el poner en marcha programas de VD que hayan demostrado un efecto sobre estos resultados (p. ej., Nurse Family Partnership y Parents as Teachers). Se anima a los encargados de los programas a dirigir análisis similares específicos para grupos poblacionales que ayuden a la selección de las intervenciones de VD basadas en la evidencia para las comunidades seleccionadas.

Keywords
  • Intervenciones de visitas domiciliarias
  • Salud materno-infantil
  • Intervenciones dirigidas
  • Intervenciones diseminadas
NOTICE Undefined offset: 1 (includes_ws/librerias/utilidades.php[294])
NOTICE Undefined index: url (includes_ws/librerias/utilidades.php[295])
NOTICE Undefined index: pii (includes_ws/librerias/utilidades.php[310])
Acknowledgements

We are very grateful to David Olds, Brian D’Onofrio, and an anonymous reviewer for their valuable feedback on this manuscript.

References
Achenbach and Edelbrock, 1981
T.M. Achenbach,C.S. Edelbrock
Behavioral problems and competencies reported by parents of normal and disturbed children aged 4 through 16
Monographs of the Society for Research in Child Development, 46 (1981), pp. 1-82 http://dx.doi.org/10.2307/1165983
Chittleborough et al., 2016
C.R. Chittleborough,A.K. Searle,L.G. Smithers,S. Brinkman,J.W. Lynch
How well can poor child development be predicted from early life characteristics? A whole-of-population data linkage study
Early Childhood Research Quarterly, 35 (2016), pp. 19-30 http://dx.doi.org/10.1016/j.ecresq.2015.10.006
Cohen, 1983
J. Cohen
The cost of dichotomization
Applied Psychological Measurement, 7 (1983), pp. 249-253 http://dx.doi.org/10.1177/014662168300700301
Cohen et al., 2003
J. Cohen,P. Cohen,S.G. West,L.S. Aiken
Applied multiple regression/correlation analysis for the behavioral sciences
3rd ed., Erlbaum, (2003)
Drake et al., 2013
B.F. Drake,L.M. Quintiliani,Y. Li,A.E. Harley,A.L. Sapp,K.M. Emmons,G. Sorensen
Comparing strategies to assess multiple behavior change in behavioral intervention studies
Translational Behavioral Medicine, 3 (2013), pp. 114-121 http://dx.doi.org/10.1007/s13142-013-0195-2
Eckenrode et al., 2001
J. Eckenrode,D. Zielinski,E. Smith,L.A. Marcynyszyn,C.R. Henderson,H. Kitzman,…,D. Olds
Child maltreatment and the early onset of problem behaviors: Can a program of nurse home visitation break the link?
Development and Psychopathology, 13 (2001), pp. 873-890
Evans et al., 2013
G.W. Evans,D.P. Li,S.S. Whipple
Cumulative risk and child development
Psychological Bulletin, 139 (2013), pp. 1342-1396 http://dx.doi.org/10.1037/A0031808
Freemantle et al., 2003
N. Freemantle,J. Wood,J. Eastaugh,M. Calvert
Composite outcomes in randomised trials: Greater precision but with greater uncertainty?
Controlled Clinical Trials, 24 (2003), pp. 98S
Hollingshead, 2011
A. Hollingshead
Four factor index of social status
Yale Journal of Sociology, 8 (2011), pp. 21-51
Ivanova et al., 2007
M.Y. Ivanova,T.M. Achenbach,L. Dumenci,F. Almqvist,S. Weintraub,N. Bilenberg,…,F.C. Verhulst
Testing the 8-syndrome structure of the child behavior checklist in 30 societies
Journal of Clinical Child and Adolescent Psychology, 36 (2007), pp. 405-417 http://dx.doi.org/10.1080/15374410701444363
Kessler, 1995
R.C. Kessler
The national comorbidity survey: Preliminary results and future directions
International Journal of Methods in Psychiatric Research, 5 (1995), pp. 139-151
Lee and Harris, 2009
H. Lee,K.M. Harris
Race, ethnicity and the social context of disadvantage and its links to obesity and physical activity in adolescence and the transition to adulthood
University of North Carolina at Chapel Hill, (2009)
Unpublished doctoral dissertation
Lempers et al., 1989
J.D. Lempers,D. Clarklempers,R.L. Simons
Economic hardship, parenting, and distress in adolescence
Child Development, 60 (1989), pp. 25-39 http://dx.doi.org/10.1111/J.1467-8624.1989.Tb02692.X
Marcynyszyn et al., 2008
L.A. Marcynyszyn,G.W. Evans,J. Eckenrode
Family instability during early and middle adolescence
Journal of Applied Developmental Psychology, 29 (2008), pp. 380-392 http://dx.doi.org/10.1016/J.Appdev.2008.06.001
Myers and Wells, 2003
J.L. Myers,A.D. Wells
Research design and statistical analysis
Erlbaum, (2003)
Olds et al., 2015
D. Olds,P. Baca,M. McClatchey,E.M. Ingoldsby,D.W. Luckey,M.D. Knudtson,…,M. Ramsey
Cluster randomized controlled trial of intervention to increase participant retention and completed home visits in the nurse-family partnership
Prevention Science, 16 (2015), pp. 778-788 http://dx.doi.org/10.1007/s11121-015-0563-x
Olds et al., 1997
D. Olds,J. Eckenrode,C.R. Henderson,H. Kitzman,J. Powers,R. Cole,…,D. Luckey
Long-term effects of home visitation on maternal life course and child abuse and neglect: Fifteen-year follow-up of a randomized trial
JAMA-Journal of the American Medical Association, 278 (1997), pp. 637-643 http://dx.doi.org/10.1001/Jama.278.8.637
Olds et al., 1986
D. Olds,C.R. Henderson,R. Chamberlin,R. Tatelbaum
Preventing child-abuse and neglect: A randomized trial of nurse home visitation
Pediatrics, 78 (1986), pp. 65-78
Olds et al., 1998
D. Olds,C.R. Henderson,R. Cole,J. Eckenrode,H. Kitzman,D. Luckey,…,J. Powers
Long-term effects of nurse home visitation on children's criminal and antisocial behavior: 15-year follow-up of a randomized controlled trial
JAMA-Journal of the American Medical Association, 280 (1998), pp. 1238-1244 http://dx.doi.org/10.1001/Jama.280.14.1238
Olds et al., 1994
D. Olds,C.R. Henderson,H. Kitzman
Does prenatal and infancy nurse home visitation have enduring effects on qualities of parental caregiving and child health at 25 to 50 months of life
Pediatrics, 93 (1994), pp. 89-98
Olds et al., 1988
D. Olds,C.R. Henderson,R. Tatelbaum,R. Chamberlin
Improving the life-course development of socially disadvantaged mothers: A randomized trial of nurse home visitations
American Journal of Public Health, 78 (1988), pp. 1436-1445 http://dx.doi.org/10.2105/Ajph.78.11.1436
Prochaska et al., 2008
J.J. Prochaska,W.F. Velicer,C.R. Nigg,J.O. Prochaska
Methods of quantifying change in multiple risk factor interventions
Preventive Medicine, 46 (2008), pp. 260-265 http://dx.doi.org/10.1016/J.Ypmed.2007.07.035
Rose, 1985
G. Rose
Sick Individuals and sick populations
International Journal of Epidemiology, 14 (1985), pp. 32-38 http://dx.doi.org/10.1093/ije/14.1.32
Royston et al., 2006
P. Royston,D.G. Altman,W. Sauerbrei
Dichotomizing continuous predictors in multiple regression: A bad idea
Statistics in Medicine, 25 (2006), pp. 127-141 http://dx.doi.org/10.1002/sim.2331
Teixeira-Pinto et al., 2009
A. Teixeira-Pinto,J. Siddique,R. Gibbons,S.L. Normand
Statistical approaches to modeling multiple outcomes in psychiatric studies
Psychiatric Annals, 39 (2009), pp. 729-735 http://dx.doi.org/10.3928/00485713-20090625-08
Tyler et al., 2011
K.M. Tyler,S.L.T. Normand,N.J. Horton
The use and abuse of multiple outcomes in randomized controlled depression trials
Contemporary Clinical Trials, 32 (2011), pp. 299-304 http://dx.doi.org/10.1016/J.Cct.2010.12.007
US Department of Health and Human Services, 2013
US Department of Health and Human Services
Home visiting evidence of effectiveness review: Executive summary
(2013)
Retrieved from http://homvee.acf.hhs.gov
Veit and Ware, 1983
C.T. Veit,J.E. Ware
The structure of psychological distress and well-being in general populations
Journal of Consulting and Clinical Psychology, 51 (1983), pp. 730-742 http://dx.doi.org/10.1037/0022-006x.51.5.730
Yoon et al., 2011
F.B. Yoon,G.M. Fitzmaurice,S.R. Lipsitz,N.J. Horton,N.M. Laird,S.L.T. Normand
Alternative methods for testing treatment effects on the basis of multiple outcomes: Simulation and case study
Statistics in Medicine, 30 (2011), pp. 1917-1932 http://dx.doi.org/10.1002/Sim.4262
WARNING Invalid argument supplied for foreach() (includes_ws/librerias/html/item.php[1199])
Copyright © 2017. Colegio Oficial de Psicólogos de Madrid
Psychosocial Intervention 26 (2017) 117-24 - Vol. 26 No.2 DOI: 10.1016/j.psi.2017.01.001